继电器的符号和图片识别
----------------------------------------------------------------------------------------------------------------------
继电器是一种电子控制器件,通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。故在电路中起着自动调节、安全保护、转换电路等作用。继电器的种类较多,如电磁式继电器、舌簧式继电器、启动继电器、限时继电器、直流继电器、交流继电器等。但应用于电子电路的,用得最广泛的就是电磁式继电器了。 通常,电磁式继电器一般由铁芯、线圈、衔铁、触点簧片等组成的。只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来的位置,使动触点与原来的静触点(常闭触点)吸合。这样吸合、释放,从而达到了在电路中的导通、切断的目的。对于继电器的“常开、常闭”触点,可以这样来区分:继电器线圈未通电时处于断开状态的静触点,称为“常开触点”;处于接通状态的静触点称为“常闭触点”。 其实,电磁式继电器又可分为直流与交流两种。区分如下:凡是交流电磁继电器,其铁芯上都嵌有一个铜制的短路环。而直流继电器是没有的。
二、继电器技术参数
1、额定工作电压
是指继电器正常工作时线圈所需要的电压。根据继电器的型号不同,可以是交流电压,也可以是直流电压。
2、直流电阻
是指继电器中线圈的直流电阻,可以通过万能表测量。
3、吸合电流
是指继电器能够产生吸合动作的最小电流。在正常使用时,给定的电流必须略大于吸合电流,这样继电器才能稳定地工作。而对于线圈所加的工作电压,一般不要超过额定工作电压的1.5倍,否则会产生较大的电流而把线圈烧毁。
4、释放电流
是指继电器产生释放动作的最大电流。当继电器吸合状态的电流减小到一定程度时,继电器就会恢复到未通电的释放状态。这时的电流远远小于吸合电流。
5、触点切换电压和电流
是指继电器允许加载的电压和电流。它决定了继电器能控制电压和电流的大小,使用时不能超过此值,否则很容易损坏继电器的触点。
三、继电器测试
1、测触点电阻
用万能表的电阻档,测量常闭触点与动点电阻,其阻值应为0;而常开触点与动点的阻值就为无穷大。由此可以区别出那个是常闭触点,那个是常开触点。
2、测线圈电阻
可用万能表R×10Ω档测量继电器线圈的阻值,从而判断该线圈是否存在着开路现象。
3、测量吸合电压和吸合电流
找来可调稳压电源和电流表,给继电器输入一组电压,且在供电回路中串入电流表进行监测。慢慢调高电源电压,听到继电器吸合声时,记下该吸合电压和吸合电流。为求准确,可以试多几次而求平均值。
4、测量释放电压和释放电流
也是像上述那样连接测试,当继电器发生吸合后,再逐渐降低供电电压,当听到继电器再次发生释放声音时,记下此时的电压和电流,亦可尝试多几次而取得平均的释放电压和释放电流。一般情况下,继电器的释放电压约在吸合电压的10~50%,如果释放电压太小(小于1/10的吸合电压),则不能正常使用了,这样会对电路的稳定性造成威胁,工作不可靠。
四、继电器应用
是一个简单实用的自动关灯电路。当按下按钮开关S后,晶体管VT立即饱和导通,电源电压(6
V)加在继电器线圈的两端,使它吸合,动合触点闭合,“ 220 V、40 W
”的灯泡电源被接通而发光。同时,电容C被迅速充电,使它的两端电压也达6 V。当放开按钮后,由电源提供电流IB的电路被切断,但电容C两端存在电压,还能维持晶体管工作,随着时间的延迟,电容中的电荷经过电阻R与晶体管的发射结泄放,电容两端的电压逐渐下降,当晶体管UBE<0.5
V以后,VT截止,继电器线圈失去电压而释放,触点被打开,“ 220 V、40 W
”灯泡的电源被切断而熄灭。这个电路,按一下按钮开关S,灯亮20秒左右自动熄灭(延时时间的长短可调节电容C的容量),可做走廊照明灯的控制装置。这个实例告诉我们,利用继电器可以低电压(6
V)、弱电流(几十毫安)来控制高电压(220
V)、强电流(几百毫安)的电路。如果需要控制更高的电压和更大的电流,可以采用小继电器控制大继电器的方法来提高电路的驱动能力。
与继电器线圈K并联的二极管VT为保护二极管,又称续流二极管。由于继电器线圈的电感在断电的瞬间,线圈两端将产生较高的反向电压,这个电压与电源电压叠加,加在晶体管c、e之间,很可能超过晶体管的最大反向击穿电压U(RB)CEO,使晶体管击穿损坏,而二极管VT的作用就是消除这个反向电压的影响,保护电路的正常工作。在电子电路中,凡是有直流继电器的地方,都需要与其线圈反向并联一个二极管,以防止电路元件的损坏。